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VARIATIONAL PRINCIPLES FOR LINEAR COUPLED
THERMOELASTICITY WITH MICROSTRUCTURE

KENNETH A, KLINE and CARL N, DESILVA

Wayne State University, Detroit, Michigan

Abstract·-Variational principles are developed for the initial-boundary value problem of fully coupled linear
thermoelasticity for inhomogeneous, anisotropic materials with microstructure. Alternative characterizations of
the solution to the mixed problem are obtained using operational methods. The variational principles are formu­
lated in such a fashion as to allow their almost immediate adaptation to all available theories of structured or
generalized continua.

1. INTRODUCTION

IN THIS paper variational principles are established for linear coupled thermoelasticity
including effects of material microstructure, Insofar as possible the formulation follows
the systematic treatment employed by Gurtin [IJ in his development of variational prin­
ciples for linear elastodynamics. Gurtin's principles [IJ fully allow for prescription of
initial displacement and velocity fields, in contrast to the classical variational principles
(Hamilton's principle) which allow specification of the displacement field at the initial
instant but assume knowledge of the displacement field at a later instant and hence do not
allow for initial conditions on velocities.

In treating thermoelasticity with microstructure we wish to specify initial conditions
on the temperature field, the displacement and velocity fields associated with material
particles, and the displacement and velocity fields associated with the microstructure
deformation. Thus, guided by Gurtin [1, 2J, we utilize the operational calculus of Mikusinski
[3J in deriving a boundary value problem which is equivalent to the initial-boundary value
problem offully coupled linear thermoelasticity with microstructure. The field equations of
this equivalent boundary value problem involve convolutions and implicitly contain the
initial conditions. This general approach stems from work by Ignaczak, see [1,4].

Classical variational principles for linear thermoelasticity are discussed by Nickell and
Sackman [5J, who recently extended Gurtin's [IJ work to obtain variational principles for
linear coupled thermoelasticity which take into account initial temperature, displacement
and velocity distributions. The present paper extends the work of Nickell and Sackman to
allow full consideration of material microstructure effects.

The theory of materials with microstructure now assumes a rather eclectic form, with
contributions of a permanent character due to a number of researchers. Since our linear
formulation is derived from such works, it is appropriate to devote this paragraph to a
brief discussion of the development of modern theories of generalized continua and
materials with microstructure. Dates given in the text refer to when manuscripts were
received for publication and provide striking illustration of the high level of activity in this
field. Ericksen and Truesdell [6] (19 March 1958) generalized and formalized the notion of
an oriented body originally proposed in the seminal paper'S of Duhem and the Cosserats.
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Ericksen and Truesdell considered a body to be composed of material particles and direc­
tors, with the directors capable of rotating and stretching independently of the deformation
field associated with material particles. The main thrust of their work dealt with the
kinematics of such media and they gave an exact description of stress and strain in rods and
shells. However, their contribution transcends any listing of results obtained since the)
exposed to researchers a rich and theretofore somewhat neglected subject. Also in J958.
Gunther [7] discussed the connection between the Cosserat theory and the continuum
theory of dislocations and gave a principle of virtual work for materials having independent
particle deformation and rigid microstructure rotation flelds. We omit mention of a number
of important contributions made from 1959 to 1963. since they are discussed 1£1 [81
Mindlin [8] (6 November 1963) developed a linear theory of elasticity with microstructure
based on the notion of a unit cell which was used to represent properties of a crystal lattice
and bears a variety of other incerpretations, e.g. as a grain of a granular material. He exhib­
ited the twelve displacement equations ofmotion and considered several approximate forms
to examine micro-vibrations and wave propagation. Koiter [9J (16 November 1963)
proposed the use of couple stress theory in explaining elastic fatigue. Eringen and Suhubi
[10J (6 December 1963) gave a nonlinear theory of elasticity with microstrudure which
contained a laudable treatment of microstructure inertia and a derivation of the micro
structure continuity equation. In a companion article Eringen [11J (11 December 1963l
treated microfluids. Green and Rivlin r12J (23 December 1963) used the concept of force
and stress multipoles, discussed in the treatise of Truesdell and Toupin [18], and con­
sidered velocity gradients of various orders in developing a theory of generalized continua
They showed that the equations of motion may be deduced from an energy postulate by
use of invariance conditions under superposed rigid body motions and, for the case of
generalized elasticity, made effective use of the entropy production inequality postulate in
deriving expressions for multipolar stresses in terms of derivatives of the Helmholtz free
energy function with respect to various strain measures. Following [10J, Suhubi and Eringen
[13J (6 January 1964) considered a linear theory and studied Rayleigh surface waves
Naghdi [14J (30 January 1964) used couple stresses in elasticity to motivate a thoughthtl
examination of shell theory. Green and Rivlin [15J (18 March ]964) extended [12J by
following Truesdell and Toupin [18] in the use of generalized velocities, body and surface
forces and stresses, and obtained sufficient conditions under which the equations of motion
and surface conditions of [18J hold. Toupin [16] (I June 1964) formulated a general
nonlinear theory of elasticity with microstructure, gave an admirable survey of existing
literature and showed how the nonlinear strain measures reduce to those utilized in
Mindlin's [8] linear theory. Green et af. [17] (10 June 1964) gave a new deflnition of multi­
polar displacements, identifled the place of directors i 11 the theory of [I5J, and presented a
complete thermodynamical theory of elastic media with directors.

Although all of these works provide insight, our formulation of the Imear theory of
thermoelasticity with microstructure will be guided mainly by the complementary works of
Mindlin [8J and Toupin [16], both of whom obtained the equations of motion and the
twelve traction boundary conditions by use of Hamilton's principle. The governing equa­
tions of this theory can also be obtained, following Green and Rivlin [12]. by postulating
an energy balance equation subject to certain invariance requirements. This approach was
taken by Fox [19J, who developed a continuum theory of dislocations for elastic materials
with microstructure, and by Allen et ai. [20] in a study of fluids with deformable micro·
structure.
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We preface consideration of representative variational principles formulated within
the context of theories of generalized continua and materials with microstructure with
some remarks on kinematics. Toupin's approach to the kinematics of media with micro­
structure [16J, which we adopt, involves associating a triad of directors with each material
particle of the medium. In general, the directors are allowed to deform and rotate inde­
pendently of the deformation field associated with material particles. In this event a de­
formed configuration of the medium is defined by twelve mapping functions: three for
material particle displacements, nine for microstructure (director) deformations. The
nine microstructure deformation mapping functions can be interpreted as follows: three
describe the microstructure rotation field and six describe the microstructure deformation
field. From [8,20J we point out that the double force, a symmetric second order tensor,
arises only when microstructure deformations are considered. If microstructure deforma­
tions are neglected and one considers only particle displacement and microstructure
rotation fields, then the equations of a Cosserat continuum result [8].

Naghdi [14J introduced couple stresses and considered displacement and rotation
fields in developing a variational principle in elasticity. The displacement and rotation
fields were not taken to be independent in this study; the rotation was defined in the classical
sense through the curl ofdisplacement. Nowacki [21J gave a variational principle applicable
to thermoelastic media with independent displacement and rotation fields. Couple stresses
entered naturally in the theory and six stress equations of motion resulted' three for linear
momentum balance and three for angular (spin) momentum balance.

In the present paper variational principles are given which extend those discussed above
in that in addition to considering independent displacement and rotation fields we aUow
for independent microstructure deformations. With this kinematical structure double
stress and double force tensors enter naturally and twelve stress equations of motion result :
six accounting for linear and spin momentum balance and six accounting for microstructure
stretch momentum balance. The stretch momentum equations enter since the micro­
structure is here allowed to deform as well as rotate. The present results thus complement
those given earlier by Kline [22J, who considered independent displacement, rotation and
microstructure deformation fields, and developed a variational principle having as its
Euler equations all ofthe field equations and boundary conditions ofthe linear (isothermal)
theory of viscodastic media with microstructure.

Our first variational principle assumes only that the double stress tensor and the
classical strain tensor are symmetric and yields, as Euler equations: the twelve stress
equations of motion and the energy balance equation (these thirteen equations are ex­
pressed in a manner so as to implicitly include all initial conditions); constitutive equations
for the heat flux, and the stress, couple stress and double force tensors; the equation ofstate;
the full set of kinematical and thermal relations (which express strain measures in terms of
the displacement, rotation and microstructure deformation fields, and the thermal gradient
in terms of the temperature field); the stress and couple stress boundary conditions; the
particle displacement and micro-deformation boundary conditions; and the temperature
and heat flux boundary conditions. By considering restrictions on the set of admissible
states we also obtain a less general variational principle which is the thermoelasticity with
microstructure counterpart of the principle of minimum potential energy. For additional
comments and references regarding variational principles we refer the reader to [1, 5, 14,22].

The main objective of this paper was to extend available variational principles to allow
consideration of the general kinematics of thermoelastic materials with microstructure.
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However, certain by-products ofthe work deserve mention. The role of the stretch momen­
tum equation [the symmetric part of (2.2b)J is now abundantly clear. Rather than con­
sidering separately stretch and spin momentum equations, one instead regards (2.2b) as
providing nine microstructure momentum balance equations and interprets the symmetry
of the double force tensor as merely placing restrictions on the form of its constitutive
equation (in complete analogy with the treatment of Cauchy stress in nonpolar mechanics),
see (2Ab), (2.5). Also, we observe that by appropriately regarding the specific entropy as
the fundamental thermodynamic variable it is possible to explicitly state (Section 51 how
the equation of state and the energy equation should be handled in variational formulations
of other theories of generalized elastic continua. Further, this work shed light on the role
of the microstructure inertia tensor I [which appears in (2.2b)]. It was found necessary to
require I to be nonsingular if' one wanted to allow specification ofarbitrary (in the context of
a linear theory) initial conditions on micro-deformations and micro-deformation velocities.
i.e. initial conditions on the microstructure motion which are totally unrelated to initial
conditions on material particle displacements and velocities, see (2.6). For nonpolar
materials (classical continua) the microstructure motion, as it were, is completely deter·
mined by the material particle motion [16J, and thus independent initial conditions cannot
be prescribed. Consistent with this, to reduce microstructure theory to the classical them)
it is necessary to require I to vanish (see Section 5). Thus the variational formulation
implies I is a generalized density. Interestingly, Dahler and Scriven [23J concluded I was
nonsingular based on statistical physics considerations.

In closing this section we acknowledge our broad debt to the literature

2. THE INITIAL-BOUNDARY VALUE PROBLEM

In this section we record the full system of equations for linear coupled thermoelasticity
for (inhomogeneous and anisotropic) materials with microstructure. Let V be the region
of space occupied by the medium, where V is the closure of an open, bounded, connected
domain of three-dimensional Euclidean space. Denote the interior of V by Vand the boun­
dary of V by S, where S is the union of a finite number of nonintersecting closed regular
surfaces (in the usual sense of Kellogg [24J), Let x be the position vector and t the time and
consider all functions of (x, t) as being defined on V x [0, x ), the Cartesian product of
region Vand time interval [0, x). Functions are defined on a boundary point of Vx (0, J))

in the sense of Gurtin (see (2.3) of [1]).
We adopt the notation of [8,20, 22J and employ a rectangular Cartesian coordinate

system throughout this paper. Thus, let u(x, t) be the displacement vector, \j!(x, t) the
micro-deformation tensor (the director differences tensor, see [16J), O(x, t) the temperature
above a quiescent reference state ~)o e(x, l) the classical infinitesimal strain tensor, y(x, t)

the relative deformation tensor [8J. K(X. t) the micro-deformation gradient tensor [8J and
u(x, t) the thermal gradient vector.

Then the kinematical and thermal relations are

(2.la,b!

Kijk = !/Jjk.i' (J; = 0.;, on Vx(O, 'Xi). (2.lc,dl

Let t(x, t) be the stress tensor, F(x, t) the body force vector, p(x) the mass density,
m(x, t) the double force tensor, ,.(x, t) the double stress tensor, B(x, t) the body double force
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tensor (denoted by «D in [8]), 1J(x, t) the specific entropy per unit mass, H(x, t) the rate of
internal heat generation per unit mass and q(x, t) the heat flux vector. Further, I(x) is a
symmetric second order tensor which represents generalized microstructure inertia coeffi­
cients [10, 13, 8].

Then the equations of motion and energy are

tji.j+Fi = PUi' (2.2a)

tji - mji + Ilkji,k +Bji = pljklitki' mij = mji , (2.2b)

pljTo = pH - qi.i on Vx (0, co), (2.2c)

The antisymmetric part of (2.2b) gives the balance of spin momentum, the symmetric part
the balance of stretch momentum. We note from [8,20J that Mindlin's r is our ro, his
(J our t-ro,

We now recall that in terms of the Helmholtz free energy function A the linear theory of
thermoelasticity with microstructure requires [8, 19, 17, 1O,25J

iJA
Ilkji = p-:,,-,

uKkji

iJA
1] = -a7i'

(2.3)

Then, in view of (2.3) and guided by Mindlin's expression for the potential energy density
function (equation (5.1) of [8J), the constitutive equations and the equation of state are
expressed as

tkj-mkj = bkjmnYmn+SkjpmnKpmn+gkjmnemn-PkjB, (2.4a)

mkj = Ckjmnemn+hjpmnKpmn+gmnkjYmn hkjB, (l.4b)

Jlpmn = aijkpmnKijk +Skjpmnl'kj +fkjpmnekj- rpmnB, (2.4c)

qi = - ki/fj' (2.4d)

pCB = To[p1]-hkjekj-PkjYkj-rpmnKpmnJ on Vx(O, co). (l.4e)

In (2.4) the quantities b, s, g, p, c, f, h, a, r, C and k are material coefficients which may be
functions of position vector x and which satisfy the symmetry relations

fkjpmn = hkpmn, hkj = hjk ,

aijkpmn = apmnijk, kij = kji on V.

(2.5)

Associated with the system of field equations (2.1), (2.2), (2.4), (2.5) are the initial con­
ditions

Ui(x,O) = di(x),

ljJiix,O) = dij(x),

B(x,O) = Bo(x)

Ui(x,O) = Vi(X),

IjIJx,O) = Vij(X),

on V,

(2.6a)

(2.6b)

(2.6c)



134 KENNETH A. KLINE and CARL. N. DESIL.VA

where d, v, a, vand Vo are prescribed functions accounting for the initial displacements,
velocities, micro-deformations, micro-deformation velocities and temperature dis­
tribution, respectively.

Preparatory to stating boundary conditions we let n denote the unit outward normal to
boundary 5 and term a point x EO 5 a regular point if n is continuous at x [I J, Further,
(51' Su), (SI" Sof;) and (SQ' So) are introduced as a system of complementary regular subset:>
ofS with, for example, SI denoting the closure of5" Then we adjoin to the field equations and
initial conditions the mixed boundary conditions

Q = qini "" Qon Sa x [0, x),

o= 0 on So x [0, <1:).

i2.7a\

(2.7b\

(2.7ci

(2.7d)

12.m

Here i, ii, ii, \ii, Qand eare the given surface stress tractions, displacements, double trac·
tions, micro-deformations, normal heat flux and temperature, respectively.

3. ALTERNATIVE FORMULATIONS

From the preceding section we observe that the mixed problem consists of finding a
set offunctions [u, \jJ, 0, e, y, K, cr, t, m, 1.1, q, rrJ on fix [0, (0) which satisfies the field equations
(2.1), (2.2), (2.4), the initial conditions (2.6) and the boundary conditions (2.7). It is no"v
necessary to specify certain regularity assumptions: following Gurtin [1] we adopt as
hypotheses on the data:

(i) p > °and Iij = I ji are continuously differentiable and det I > 0 on V:
(ii) b, s, g, p, c, f, h, a, r, C > 0 and k are continuously differentiable on Vand satisfy

(2.5) :
(iii) d and aare continuously differentiable on S, and v, vand 00 are continuous on S:
(iv) F, D, H are continuous on fix [0, 'Xi):
(v) ii, \iI and eare continuous on Su x [0, CD), S,p x [0, CfJ) and So x [O,x.), respectively:

(vi) i, uand Qare piecewise regular (see [1], p. 35) on SI x [O,JJ), S" X [0, x) and SQ x
[0, (0), respectively.

To characterize the solution of the foregoing mixed problem by means of variational
principles it is convenient to first introduce an admissible state. Considering functions of
(x, t) we shall use the standard definition for the function class CM,N on fix [O,X)), recalling
that the first index indicates the order of spatial differentiation while the second refers to
time differentiation ([1], p. 35). Then by an admissible state we mean the ordered array of
functions

d = [u, \jJ, 0, e, y, K, cr, t, m, 1.1, q, ry]
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defined on Vx [0, (0) with the properties

(a) Ui ECI .2 , t/J .. E Cl.2 BE C I.O,I} ,

e··E Co.o, y··E CO,o KijkE Co.o,
IJ 1] ,

Cii E CO.O, t .. E Cl,o m·· E Co.o
I} , IJ '

J.1ijk E C I.O, qi E C I.O, /1 E CO. l ;

(b) eij = eji , mij = mji on Vx [0, (0), (3.1 )

We note in passing that one could eliminate symmetry restrictions (b) from the definition
of an admissible state by following the approach of Reissner [26J in the subsequent develop­
ment of variational principles.

We adopt the usual definitions ([1J, p. 41) for addition of states and multiplication of a
state by a scalar. Thus with IX a scalar

si+,r} = [u + ti, ++ \ii" .. ,Yf + ~],

a.?i = [au, a+, ... , aYfJ
(3.2)

and hence the set of all admissible states is a linear space.
Now a solution of the mixed problem is defined as an admissible state ,?i = [u, +, 0, e,

1, K, <J, t, m, fl, q, 11J which satisfies the field equations (2,1), (2,2), (2.4), the initial conditions
(2,6) and the boundary conditions (2.7), We are now in a position to discuss the

Equivalent boundary value problem

Remark 1. Let

c?i = [u, +, 0, e, 1, K, <J, t, m, fl, q, YfJ

be an admissible state. Then ,?i is a solution of the mixed problem (of coupled thermo­
elasticity with microstructure) if, and only if, ,?i meets the field equations (2.1), (2.4), (3.3)
and boundary conditions (2.7), where

g*tji.j+j; = PUi'

g*(tjj-mji+J.1kji.k)+bji = pljkt/Jki'

h-g'*qi.i=pTo11 on Vx[O,OO).

The functions g, Ii, bji' hand g' are defined as follows:

g(t) = t, g'(t) 1 (0::0:; t < 00);

h(x, t) = [g*FJ(x, t) + p(x)[tvi(x)+di(x)],

bji(x, t) = [g*BjiJ(x, t)+p(x)Ijk(x)[tl\i(x)+dki(X)],

h(x, t) = [g'*H](x, t)+ p(x)C(x)Oo(x)

+ To[hkix)dj.k(x) +pkix)(dj.k(x)- dkix»

+rpmn(x)d",njx)], (x, t)E Vx [0, (0).

(3.3a)

(3.3b)

(3.3c)

(3.4)
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Further, a*b denotes the convolution of functions a(x, t), b(x, t) defined on Vx [0, ~.c),

and is given by

[a*bJ(x,t) = J~a(X,t-r)b(X,r)d1 on Vx[O,x).

To prove remark 1, consider an admissible state,'; = [u, \jI, 0, e, y, K, 0", t, m, JI, q, IIJ
which by definition has the properties (3.1). Clearly we need only show that field equations
(2.2) and initial conditions (2.6) are satisfied if, and only if, field equations (3.3) hold. To this
end certain regularity properties in (3.1) may be relaxed; for example, it suffices to consider
UiECo.2, !/JijECO. 2. Gurtin [IJ proved field equations (2.2a) and initial conditions (2.6a)
are satisfied if, and only if, field equations (3.3a) are satisfied. We now prove field equations
(2.2b) and initial conditions (2.6b) hold if, and only if, field equations (3.3b) arc satisfied.

Say (3.3b) holds and use (3.4) to obtain

pljk(!/Jki-tvki-·clki) = g*U;i-mji+Pkji.k+Bii)' (3.5)

Since by assumption I is nonsingular introduce I I, the inverse to t and write (3.5) as

Using the definition ofg, (3.4), it follows from (3.6) that !/Jmi(x, 0) = clmi(x), ~mi(X, 0) = vmi(Xl.
With initial conditions (2.6b) established use (2.6b), (3.5) and integration by parts to find

0= g*(t;i--mji+l1kji.k+B;i-pljkljjki)· (3.7J

From (3.7) and the Titchmarsh theorem [3J follows field equations (2.2b). Conversely,
assume (2.2b), (2.6b) hold. Then from (3.7) and by reversing the above argument obtain
(3.3b).

Finally, to complete the proof of remark 1 we are to show equations (2.2c), (2.6c) are
equivalent to (3.3c). This can be accomplished following Nickell and Sackman [5J, however.
one comment is in order; it is not necessary to assume the equation of state (2.4e) holds for
t = 0, rather, this fact follows naturally. For example, let s,; be an admissible state which
meets (2.1), (2.2), (2.4), (2.6), (2.7). To show (3.3c) holds observe that from (2.1 a,b,c) equation
of state (2.4e) may be expressed in terms of 0,11, u, \jI on Vx (O,X)). From regularity proper­
ties (3.1) and the fact that 0, u, \jI take on finite, specified values [through (2.6)J over Vat
t = 0, it follows that I1(X, 0) may be expressed in terms of 0o, d, aover V. The validity of
(3.3c) then follows from the proof of Theorem 4.2 of [5J if one uses the definition of h from
(3.4). Conversely, to show (2.2c), (2.6c) hold if s:t is an admissible state which meets (2.1),
(2.4), (3.3), (2.7) we again use the fact that from (2.1), (2.4e) 0 may be expressed in terms of
11, u, \jI on Vx (0, co). Now by (3.3c) /](x, 0) is well defined on V. Thus by (3.1), (2.2a,b), (2.4e)
O(x,O) may be expressed in terms of I1(X, 0), d(x), d(x). From this, (3.3c) and the definition
of h in (3.4) it is easy to establish (2.2c), (2.6c). The argument is analogous to that given above
pertaining to (3.5); also, see [5].

We point out that the expressions given for field equations (3.3) could be developed by
use of the Laplace transform [4, 5]. Also note that the full set of initial conditions enter (3.3)
through the definitions (3.4).

Guided by remark 1 other alternative formulations can be made. To give an example
we now define a deformation and temperature .field corresponding to a solution or the mixed
problem as an ordered array of functions [u, 'IJ, OJ such that there exist functions e, y, K, 0",
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(3,8a)

t, m, 11, q, 'l with the property that [u, \jI, e, e, "(, K, 0', t, m, p, q, 1]] is a solution to the mixed
problem. Then, in analogy to Theorems 3.3 of [1) and 4.4 of [5], we state

Remark 2. Let U i EC2 ,2, !/JjiEC2,2 and 8EC2,l. Then [u,\jI,8J is a deformation and
temperature field corresponding to a solution of the mixed problem of coupled thermo­
elasticity with microstructure if, and only if.

g*[(bkjmn +gmnkj)(Un,m - t/!mn)

+ (gkjmn +Ckjmn)um,n + (Skjpmn +fkjpmn)t/! mn,p

- (Pkj +hk)81k +fj pUj,

g*{bkjmn(Un,m -!/Jmn)+ Skjpmnt/!mn.p

+ gkjmnUm,n - PkjB + [apmnikjt/!mn,p

+ Smnik)Un•m-!/Jmn) +fmnikPm,n - rikj8L}

and

+bkj = plkm!/Jmj'

h +g'*(kij8),i = pCB + To[hkpj,k +Pk)Uj,k - t/!kj)

+ rpmn!/Jmn,pJ on Vx [0, (0);

[(bkjmn +gmnkj)(Un,m - t/!mn) + (gkjmn +Ckjmn)Um.n

+ (Skjpmn +h.jpmn)t/!mn.p - (Pkj+ hkjW]nk = tj on St x [0, (0),

Ui = ui on Su x [0, (0),

-rikje]ni = fikj on SI' x [0, (0),

t/!kj = tiJkj on S", x [0, (0),

- kije,jni == Q on SQ x [0, (0).

e == () on So x [0, (0).

(3.8b)

(3.8c)

(3.9a)

(3.9b)

(3.9c)

(3.9d)

(3.ge)

(3.91)

To prove remark 2 say U, \jI, emeet (3.8), (3.9). Define e, "(, K, 0' through (2.1), and t, m,
11, q, 'l by (2.4). Then use (2.5), (3,9) to show boundary conditions (2.7) hold. With (2.1), (2.4),
(2.5) equations (3.8) imply (3.3) and thus remark 1 yields that [u, \jI, e, e, "(, K, 0', t, m, 11, q, 'l] is
a solution to the mixed problem. Conversely (2.1), (2.4), (2.5), (2.7), (3.3) imply (3.8), (3,9) to
complete the proof.

4. VARIATIONAL PRINCIPLES FOR THE MIXED PROBLEM

In this section we give two variational principles characterizing coupled thermoelasticity
with microstructure. The first principle is more general since it treats admissible states
which are not required to meet any of the field equations, initial conditions or boundary
conditions,

The term functional is used to identify a real valued function whose domain is a subset
of a linear space (recall the set of all admissible states is a linear space). IfL is a linear space,



KENNETH A. KLINE and CARL N. DESIL.VA

K a subset of Land Q{.} a functional defined on K, let

,! + Ci.C# E K for every real x (41 i

and formally define the notation

The variation of Q [.} is zero at 4 over K and is written

()Q;,!: c= 0 over K,

if. and only if, ()",Q{sf ] exists and equals zero for every choice of .;ii consistent with (4.1 L

Recall that g(t) = t, g'(t) = 1 (O:s; t < Xl) and functions j;, bji and h are defined on
Vx [0, X!) through (3.4) and include the prescribed initial values for displacements, veloci­
ties, micro-deformations, micro-deformation velocities and temperature.

First variational principle

Let K be the set of all admissible states. Letc! = [u, \jJ, 0, e, "{, K, 0", t, m, /.l, q, 11J EO K.
and for each t E [0, X! ) define the functional Q, (.} on K by

- r. * * A d (' J" * . * 1S- • .'i" g Ii Ui ,) + s, g (ri - ttl lI, (

+ J' g*t1,/tbij dS -+ Jg*(Pij- fli})*l/JijdS
Sljl s~,

J
1 ~ r 1 ~

-+ 1;g*g'*Q*0 dS + J i-g*g'*(Q - Q)*OdS
s" 0 SQ 0

I {* . f' I )*- (g tji.j-t-. ,"2Pll, lIi
v

+ (g*{lji-- mj,+ t1kji.k) +hji --tpl jkl/JkJ*l/Jji

+ Ig*(!i'*qi.i-h+pl;)II)*O~ dV
~) I

- Iv~. g* Pkij*Kkij + g*Uji - mji)*r'ji

+g*m*c+Lg*g'*q.*(J'.l dV
J'J'To ".r

+ r g*) La K . *K +l.h '! *"
". } 2 kijpnm klj pmn 2 .limn I .Ii rmn

• I,

+iC jimne;i*emn + Skjpmn}'kj*Kpmn

+ .fkjpmnCk/Kpmn +gkjmnr'k/emn

- -~g'*k(J'*(J'+_To -(pYf- /z·e
21;, 'J' J 2pC' J' Jl

-- Pii ~'ji -- I'kijKki)*(pll- hmnemil

- Pmn}'mll- I' pmnKpmnl} d V.

(4.4)
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(4.6)

(4.5)bOt{s(} = 0 (0 S t < 00)

if and only if d is a solution of the mixed problem.
Proof. Letd = [ii, \it, B, e, 1, K,<t, i, m, ji, q, ~J E K,from which it follows thaLnt' +rJ.s;}EK

for every scalar rJ.. Then by (4.4), (4.2), (2.5), property (b) of admissible states, properties of
the convolution [3J, and the divergence theorem

bdOt{,nt'} = f g*(u;-u;)*t;dS+ f g*(t;-i;)*uidS
Su St

+ f g*(ljiij-l/J;)*fiijdS+ f g*(llij-{li)*l(JijdS
S~ S~

+f ~ g*g'*(8-e)*Q dS +f ~g*g'*(Q-Q)*OdS
So 0 SQ To

-J {(g*t ...+ 1. - pu.)*u.Jr,) .J i I I

V

[g* -+ (tj;- mj;+ Ilkj;,d +bj;- pljkVlk;]*l/J ji

1 _}
+Tog*(g'*q;.;-h+PTolJ)*e dV

+ r {g*(Ui,j-l/Jji--Yji)*(tj;-mj;)Jv

+ g*[t(ui,j +uj,;} - ej;]*mj;+g*(l/J;j.k - Kk;)*fikij

+ ~o g*g'*(e,i- (}i)* t/i} dV

+ Iv g*{[ -(tj;-mj;)+bjimnYmm+djipmnKpmn

~ J+ gj;mnemn - pcPji(PIJ - hmnemn - PmnYmn - rpmnKpmn) *Yj;

+ [-mji+Cj;mnemn +!j;pmnKpmn+gmnjiYmn

~ J- pChj;(PIJ-hmnemn-PmnYmn-rpmnKpmn) *Cji

+ [ - Ilkij +akijpmnKpmn + dmnkijYmn + fmnkijemn

- :~rkiiPIJ - hmnemn - Pmni'mn - rpmnKpmn)] *Kkij

1 '* _*_+"7:g [-qi-kiPjJ (}i
o
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Now if.w is a solution, by remark I. (4.6) yields

o (U J ) (47)

for every ,r} E K and hence implies (4.5\ Conversely, to show that .ci E K is a solution to

the mixed problem whenever (4.7) holds one can merely follow the proofs given by Gurtin
[lJ and Nickell and Sackman [5J, in that one considers various special choices for.# and
uses (5.6) and remark I. We omit explicit details here noting that one will use three lemmas
proved by Gurtin [I J (as well as minor extensions of these lemmas).

Following the format of Gurtin [1] and guided by remarks 1,2 and the first variational
principle it is possible to deduce a variety of other variational principles. To extend the
Hellinger--Reissner principle (see [14J) to include microstructure effects one must introduce
additional material coefficients so as to express constitutive relations for e, y, K, <T in terms
of 0, t, m, Jl, q, and the equation of state in the form 0 a function of 1], t, m, Jl. We do no1
record these lengthy though straightforward results here; rather, as an example, we state
the principle of stationary potential energy for thermoelastic materials with microstructure.

Second variational principle

Let K be the set of all admissible states that meet the kinematical and thermal relations
(2.1), the constitutive relations and equation of state (2.4), and the displacement, micro­
deformation and temperature boundary conditions (2.7b, d, f). Let .w = [u, 'it, 0, e, y, K, <T.

t, m, Jl, q, 11J E K, and for each t E [0, x) define the functional <D,; . }on K by

<D,:.cil = -- r g*tj*ujd."J' f g*{1i/l/JijdS-J' ~-g*g'*Q*OdS
• 'i, s~ SQ 0

+Iv {(1PUj--n*Ui+t~Pljklj;ki-bjJ*l/Jji

+Ag*(h - pTolJ)*0+1g* [11kj/Kkij

(4.8)

Then

(4.9)

if and only if .ci is a solution to the mixed problem.
Proof. Let .r/i = [ii, \ii, D, e, y, K, (t, t, riJ., ii, ij, ~J be an admissible state and suppose

.ci + !y'.r} E K for every scalar!Y..

Condition (4.10) requires.r/i to meet (2.1), (2.4) with

iii = 0 on S" x [0, CD),

If;ij = 0 on S", x [O,X!),

D= 0 on So x [0, Cf:).

(4.10)

(4.11a)

(4.llb)

(4.llc)
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Next use (4.8), (4.2), (2.1), (2.4), (2.5), (4.11), properties of the convolution and the divergence
theorem to verify that

b"iI>,{si} = f. g*(ti- iJ*iii dS + f. g*(pjj - {ii)*!jJ jj dS
s, s"

f. 1 ~ - r { -+ I;g*g'*(Q-Q)*edS+ J, (pui-,h-g*tji)*u j
SQ 0 V

1 -}+ To g*(h - pTol] +g'*qi,J*e d V (0 S t < Xi), (4.12)

for every ii jE C I •2 , !jJji E C I ,2 and (j E Cl,o which meet (4.11). Now if d is a solution of the
mixed problem (4.12), using remark 1, implies (4.9). Conversely, (4.12), (4.9), (2.1), (2.4),
remark 1and the fundamental lemma ofthe calculus of variations imply that sd is a solution
of the mixed problem to complete the proof.

5. DISCUSSION

The purpose of this section is twofold: we wish to make the variational formulation
ofthe solution to the mixed problem oflinear coupled thermoelasticity with microstructure
as transparent as possible and thus indicate how it could be easily adapted to serve other
theories ofgeneralized continua, as, for example, the theory of Green et al. [17J ; we want to
briefly discuss how the theory can be reduced to one governing the behavior of a material
without microstructure.

Consider the form of the functional entering the first variational principle and defined
by (4.4). The surface terms require no comment; they can be easily constructed consistent
with any theory ofgeneralized continua. The first volume term involves convolutions ofthe
basic variables u, l/t, ewith the balance equations. The key point here is that the functions
necessary to describe a deformation and temperature field of the material (see remark 2)
must operate (through convolutions) on their associated balance equations. Also note that
an energy equation ofthe form (2.2c) will hold for very general theories of structured elastic
media (for the present theory (2.2c) results from the linearized forms of (11), (27), (28) in
[25]). Thus the counterpart, in other theories, to the first volume term in (4.4) can be easily
constructed using appropriate definitions analogous to (3.4).

The second volume term in (4.4) involves convolutions of stresses, double force and heat
flux with associated kinematical and thermal measures. Again, the analogy will be obvious;
just note all kinematical and thermal measures appropriate to a theory, e.g. those in (2.1)
for the present formUlation, must enter this term.

The last volume term in (4.4) may be easily constructed from an expression for the free
energy function. Note in such an expression I] must enter as an independent variable rather
than e. This can be easily accomplished using the equation of state and is necessary since
the operational methods leading to the equivalent boundary value problem (remark 1)
force one to consider I] as the fundamental thermodynamic variable. Also, dissipative terms,
such as those involving the thermal gradient vector, must enter this term.
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To formulate the principle of stationary potential energy observe, as a guide, that with
(2.1), (2.4), (2.7b, d, f), the functional defined by (4.4) reduces to that given in (4.8).

Finally, to reduce the present theory to a theory without microstructure we note that y.
defined by (2.1 b), is identically zero when the microstructure deforms and rotates along
with the continuum, see [16]. In this event independent boundary and initial conditions can
no longer be specified for ~. With this in mind and referring to (2.4), the present them}
reduces to the classical case by requiring material coefficients s, g, p, a, f and r to vanish
along with the generalized microstructure inertia coefficients I. We interpret the fact certain
material coefficients must vanish to mean these coefficients consist of measures of micro
structure characteristic lengths, see [8].
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A6cTpaKT-,UaKJTCll BapHlIl.\uoHHbIe rrpUHI.\U"bI ilJIlI ilIiHaMU'leCKOH 3aila'lU C Ha'laJIbHblMIi Ii KpaeBblMI1

YCJIOBUlIMU rrOJIHO COrrpllJKeHHOH JIIiHeHHOH TepMoyrrpyrocTH ilJIlI HeoilHopoilHblX, aHli30TporrHblx MaTep­

HaJIOB C MUKpOCTpyKTypOH. nyTeM UCrrOJIb30BaHUlI MeTOilOB rrpeo6pa30BaHli1l rrOJIY'laIOTClI aJIbTepHaTUB­

Hble xapaKTepucTHKU perneHulI B rrpliMeHeHliu K CMernaHblM 3aila'laM. <l>OPMYJIIiPYKJTClI Bapual.\liOHHbIC

rrpuHl.\lirrbI B TaKol!: «popMe, 'ITO ee MOJKHO CeH'laCJKC rrpUMeHUTb KO DceM ilocTyrrHblM TeopHliM CTpyK­

TypHblX Ii o606meHHblX KOHTHHyyMOB.


